

institut universitaire de France

EP instabilities: nonlinear wave-particle interactions and consequences

Lecture by M. Lesur

12th ITER International School

June 29th, 2023

Motivation

 High-energy ions drive macroscopic modes (such as AEs, EGAMs), which may lead to their premature ejection.

Rosenbluth, PRL (75) Cheng, Chen, Chance, AP (85)

Fast-particles loss

← fluid nonlinearities (avalanches, coupling with GAM, ZF...)

← kinetic nonlinearities (particle trapping, frequency sweeping...)

Improving predictive capabilities

- stability (linear and nonlinear)
- saturation amplitude
- qualitative nonlinear behavior
- coupling with other modes, with turbulence, and with flows
- transport properties

Key points

Nonlinear fast dynamics of an isolated EP-driven mode can be modeled by the Berk-Breizman (BB) model. (generalization of the classic

> Berk, Breizman, PFB(90) Berk, Breizman, et al., PRL(96) Berk, Breizman, et al., PoP(99)

Observed quantitative similarities between BB model, and TAEs.

Fasoli, et al., PRL(98)

- Rich dynamics, very informative in terms of nonlinear behavior
- Points-of-view of particles, of wave ٠ amplitude, of power balance
- Theory relates nonlinear features with linear parameters

bump-on-tail instability)

Outline

I. Bump-on-tail instability

- II. The Berk-Breizman model
- III. Chirping
- IV. Subcritical instabilities

Perspectives

1D bump-on-tail model

1D Vlasov equation •

 f_0

 \circ

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{qE}{m} \frac{\partial f}{\partial v} = 0$$
Initial distribution
Poisson equation
$$\frac{\partial E}{\partial x} = \frac{q}{\epsilon_0} \int \delta f dv$$

$$\delta f = f(x, v, t) - f_0(v)$$
Note: equivalent to "Displacement Current Equation"
$$\frac{\partial E}{\partial t} = -\frac{q}{\epsilon_0} \int v \, \delta f \, dv$$
(with Poisson at t=0)
Here: periodic B.C. in x 5/5

5/58

Instability mechanism (single mode)

Single mode (k, ω)

$$E(x,t) = E_0(t)\cos(kx - \omega t)$$

Resonance – assuming constant velocity, $x(t) = x_0 + v t$

$$\langle E(x,t) \rangle_t \to 0$$
 except if $v = \omega/k \equiv v_R$
 $\downarrow E(x,t) = E_0(t) \cos(kx_0) \approx \text{const.}$

(velocity is

not constant)

Linear theory

Introducing kinetic nonlinearity

1D motion \rightarrow **2D** phase-space

⇒ Distribution function is constant along phase-space orbits motion

Resonance

θ 7

Energy of the single pendulum: $E = \frac{1}{2}ml^2 \frac{\dot{\theta}^2}{\theta} - mgl\cos\theta = const.$ Energy of a charged particle in electric field: $E = \frac{1}{2}mv^2 - q\varphi_0\cos kx$ (in the ref. frame of the wave, $v_R = \omega/k$)

Resonance

Bounce frequency of most deeply trapped particles

$$\omega_b \sim \sqrt{kE_0}$$

Island width

$$\Delta v \sim \sqrt{E_0/k}$$

Electrostatic trapping

 \Rightarrow As the wave amplitude grows, more and more particles are trapped

Wave energy $\mathcal{E} \sim E^2$ Free energy $\mathcal{E} \sim E^{3/2}$

Saturation of the single mode BoT instability

Nonlinear theory for a single mode

Solving Vlasov equation in the resonant region...

 \Rightarrow Island in phase-space (x,v), consistent with a finite amplitude potential

Outline

- I. Bump-on-tail instability
- 🔷 II. The Berk-Breizman model
 - III. Chirping
 - IV. Subcritical instabilities

Perspectives

The Berk-Breizman model

Classic "bump-on-tail" instability, with collisions and external damping.

Berk, Breizman, et al. '90, '92, '93, '95, '96, '97, '98, '99

• 1D kinetic equation with collision operator,

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{qE}{m} \frac{\partial f}{\partial v} = C(f - f_0) \longrightarrow C(f - f_0) = -\nu_a (f - f_0)$$
 Krook
or
$$C(f - f_0) = \frac{\nu_f^2}{k} \frac{\partial (f - f_0)}{\partial v} + \frac{\nu_d^3}{k^2} \frac{\partial^2 (f - f_0)}{\partial v^2}$$

$$\frac{V - pace diffusion}{\frac{1}{p_0}} = \frac{V_f - f_0}{\frac{1}{p_0}} + \frac{V_d - f_0}{\frac{1}{p_0}$$

Nonlinear dynamics is essentially 1D

 $\theta_3 = \boldsymbol{n} \cdot \boldsymbol{\alpha} - \omega t$ $I_3 \sim P_{\varphi} - P_{\varphi}^{res}$

- Alfvén waves
- Geodesic Acoustic Modes (GAMs)

Fishbones

 \Rightarrow Perturbative description of nonlinear dynamics for single, isolated mode, with fixed mode structure 18/58

EP distribution

function

e.g. Toroidal Alfvén Eigenmode (TAE)

⇒ Problem split between slowly-evolving (~ 100 ms) 3D mode structure and fast (~ 1 ms) 1D nonlinear amplitude and phase dynamics

19/38

The BB model reproduces experiments

Comparing BB model with fusion plasma experiments

Quantitative agreement (after adjusting free parameters)

- TAEs on JET, JT-60U, MAST
- EGAM on the LHD
- Qualitative agreement (may be quantitative ?)
 - TAEs on the LHD
 - EGAM on JET
 - e-fishbones on HL-2a
 - many more
- Predictions
 - Qualitative nonlinear behavior
 - EGAM on LHD: phase relationship and its evolution, amplitude threshold
 - more?

⇒ Successful reduced modeling (albeit maybe limited predictive capabilities)

Time [ms]

Lesur '20

Time-scales in the BB model

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{qE}{m} \frac{\partial f}{\partial v} = C(f - f_0)$$
or
$$C(f - f_0) = -\nu_a (f - f_0)$$
or
$$C(f - f_0) = \frac{\nu_f^2}{k} \frac{\partial (f - f_0)}{\partial v} + \frac{\nu_d^3}{k^2} \frac{\partial^2 (f - f_0)}{\partial v^2}$$

$$\frac{\partial E}{\partial t} = -4\pi q \int v(f - \bar{f}) dv - 2\gamma_d E$$

Involves many time-scales:

 ω mode frequency ω_b bounce frequency $\omega_b \sim \sqrt{kE_0}$

 γ_L linear drive \neq linear growth rate $\gamma \approx \gamma_L - \gamma_d$

- γ_d external damping rate
- ν_f drag rate

or Krook collision rate ν_a

 ν_d diffusion rate

\Rightarrow Rich phenomenology

Power balance in the BB model

Wave energy $\mathcal{E}(t) \equiv \int E^2/(2\epsilon_0) \mathrm{d}x$

Power transferred power from field to particles

 $P_h(t) \equiv q \int v E f dx dv$ Electric power: $\frac{\partial W}{\partial t} = \mathbf{F_E} \cdot \mathbf{v}$ Density of electric power: $J \cdot E$

Power balance

$$\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} + P_h + \frac{4\gamma_d\mathcal{E}}{\mathrm{d}t} = 0$$

⇒ If wave/particles power transfer can be calculated, so can be wave energy

Phenomenology

Nonlinear saturation far above threshold

(compare with the classic bump-on-tail case, $rac{\omega_b}{\gamma_L}pprox 3.2$)

⇒ Similar (and even higher) amplitudes can be reached despite dissipation

Cubic nonlinearity near threshold

Expansion in Fourier series
$$f = \langle f \rangle + \sum_{n=1}^{\infty} f_n e^{in(kx - \omega t + \alpha)}$$

Near-threshold ordering

$$\gamma \approx \gamma_L - \gamma_d \ll \gamma_L$$

Berk, Breizman, Pekker '96

 $f_2 \ll f_1 \ll f_0$ and $\langle f \rangle \approx f_0$ (and $f_{n \ge 3} = 0$)

Substitute into the kinetic equation

$$\begin{aligned} \partial_t f_0 + \nu_a \ f_0 &= G_0(f_1, \omega_b^2) \\ \partial_t f_1 + ik\nu \ f_1 + \nu_a \ f_1 &= G_1(f_0, f_2, \omega_b^2) \\ \partial_t f_2 + 2ik\nu \ f_2 + \nu_a \ f_2 &= G_2(f_1, f_3, \omega_b^2) \end{aligned}$$

Solve iteratively and substitute f_1 into power-balance

$$\frac{d\omega_b^2}{dt} = \frac{(\gamma_{L0} - \gamma_d)\,\omega_b^2}{\text{Linear growth}} - \frac{\gamma_{L0}}{2} \int_{t/2}^t dt_1 \int_{t-t_1}^{t_1} dt_2 (t-t_1)^2 e^{-\nu_a(2t-t_1-t_2)} \,\omega_b^2(t_1)\,\omega_b^2(t_2)\,\omega_b^2(t+t_2-t_1)$$

⇒ Reduced integral equation yields the time-evolution near threshold Cubic nonlinearity

Numerical solutions

~

 $\frac{\nu_a}{-}$

Berk, Breizman, Pekker '96

Normalising time with $\gamma \approx \gamma_L - \gamma_d$

Normalising field amplitude as

 \Rightarrow Only one parameter $\hat{\nu} =$

How to make sense of A<0 ? explosive solution ?

26/58

Comparisons with BB model simulation

Bill quizz

Let's consider a simple situation in a tokamak where energetic particles (EPs) drive a single Toroidal Alfvén Eigenmode (TAE).

Then, which one is true?

The Berk-Breizman model can qualitatively reproduce the physics of

- 1. The slow time-evolution of the radial structure of the TAE
- 2. Small radial deviations of EPs due to their nonlinear interactions with the TAE
- 3. Nonlinear interactions between the TAE and thermal ions

Outline

- I. Bump-on-tail instability
- II. The Berk-Breizman model
- ▶ III. Chirping
 - IV. Subcritical instabilities

Perspectives

Phenomenology

Chirping (fast frequency sweeping)

Chirping (2)

Same behavior in BB model

\Rightarrow BB model to understand chirping of EP-driven modes

Holes and clumps in the BB model

⇒ Chirping (fast frequency sweeping) = fast vortex dynamics

A phase-space hole is self-coherent

Self-sustaining structure

Phase-space vortex formation is a fully nonlinear, kinetic process

Collisions (and numerical inaccuracies) tend to fill the holes

\Rightarrow BGK mode or soliton

Bernstein & Green & Kruskal '57 Dupree '83 Schamel '86 Berk & Breizman '99

\Rightarrow a PS vortex is not tied to a wave and can evolve independently

35/58

Phasestrophy and momentum exchange

Phasestrophy is the phase-space density auto-correllation,

 \Rightarrow Measure of phase-space vortices.

$$\Psi \; \equiv \; \int \left< \delta f^2 \right> \mathrm{d} v$$

Diamond, Itoh, Itoh, Modern Plasma Physics Kosuga & Diamond '11

Increasing phasestrophy implies:

- Structure growth
- Growth of relative entropy

$$\frac{d\psi}{dt} = -\frac{2}{m} \frac{df_0}{dv} \frac{dp_{struct.}}{dt} \qquad p_{kin} + p_{wave} = \text{const.}$$

• Particle transport in "velocity space"

Energy/phasestrophy (W- Ψ) theorem Lesur & Diamond, '13

Wave energy
$$\frac{dW}{dt} + 2\gamma_d W = \sum_s \frac{m_s u_s}{d_v f_{0,s}} \left(\gamma_{\Psi}^{\text{col}} + \frac{d}{dt} \right) \Psi_s$$

Energy dissipation rate

 \Rightarrow 4 points of view: momentum, energy, entropy, phasestrophy

Nonlinear growth rate

Energy/phasestrophy (W-\Psi) theorem
$$\frac{dW}{dt} + 2\gamma_d W = \sum_s \frac{m_s u_s}{d_v f_{0,s}} \left(\gamma_{\Psi}^{col} + \frac{d}{dt} \right) \Psi_s$$

$$\gamma_{\Psi}^{col} = 2\nu_a + \frac{2}{\Psi_s} \frac{\nu_d^3}{k^2} \int_{-\infty}^{\infty} \left\langle \left(\frac{\partial \delta f_s}{\partial v} \right)^2 \right\rangle dv$$
Model of Gaussian hole
$$\langle \delta f \rangle = h(t) \exp \left[-(v - v_0(t))^2 / (2\Delta v(t)^2) \right]$$
Poisson equation \rightarrow wave energy
$$W = \frac{1}{2} \frac{m \omega_p^2}{k^2 n_0} \left(\int \langle \delta f \rangle dv \right)^2$$

$$\Rightarrow \frac{d\Psi}{dt} = \left(\gamma_{\Psi} - \gamma_{\Psi}^{col} \right) \Psi$$
with
$$\sqrt{\Psi} \approx \frac{16}{3\sqrt{\pi}} \frac{\Delta v}{v_R} \frac{\gamma_L}{\omega_p} \gamma_d$$
Lesur & Diamond, '13

 \Rightarrow Nonlinear growth requires both free energy and energy dissipation

37/58

Chirping can be further categorized

Phenomenology: for small drag ($v_d/v_f = 5$)

Phenomenology: for large drag ($v_d/v_f = 1$)

Fitting the BB model to experiments

 \Rightarrow Quantitative agreement for chirping dynamics

Chirping velocity

⇒ Nonlinear rate of change of frequency depends on linear parameters + saturation level

$$\frac{\omega_b}{\gamma_L} = 0.54$$
42/58

Chirping velocity (advanced)

Deviations from $\delta\omega(t) \approx 0.44 \,\gamma_L \sqrt{\gamma_d t}$

Strong correction due to collisions: still analytical

Lilley '10 Nyqvist '12 Lesur '10 and '13

Chirping lifetime

Hole/clump width ~ γ_L

 \Rightarrow diffusion time $\tau_{max} \sim \frac{\gamma_L^2}{\nu_J^3}$

Berk, Breizman, et al., '97

However, for higher collisionality, diffusion affects hole/clump width

 \Rightarrow Simple expression for chirping lifetime

Chirping period

 \Rightarrow Strong link between velocity diffusion & frequency of bursts $_{45/58}$

δf vs full-f model

δf model

Symmetric chirping, due to:

- Constant gradient distribution
- The bulk part determines the frequency of the mode only.
- We construct a distribution such that chirping does not suffer any border effect.

Full-*f* model

Chirping asymmetry, due to:

- Shape of the distribution
- Modification of the bulk distribution
- Proximity between resonant velocity and beam velocity or bulk

Bill quizz

In a simulation of the BB model, you obtain this spectrogram of electric field fluctuations.

What do the branches A and B correspond to in the velocity distribution of fast particles?

- 1. Two holes
- 2. A is a hole, B is a clump (or bump)
- 3. B is a hole, A is a clump (or bump)
- 4. It's impossible to know without looking at the velocity distribution

Outline

- I. Bump-on-tail instability
- II. The Berk-Breizman model
- III. Chirping
- > IV. Subcritical instabilities

Perspectives

Basic concepts of subcritical instability

Amplitude |r|

0

-4

-3

-2

- Circumvent linear stability theory
- Threshold in amplitude
- Hysteresis
- Local vs Global Dauchot & Manneville '97

Tutorial: Lesur '18

instability

stable

-1

 $a \sim \gamma^2$

\Rightarrow Subcritical instabilities ubiquitous in plasmas and neutral fluids $_4$

49/58

2

unstable

Experimental example: Kelvin-Helmholtz

Saturated state:

Self-organized, self-sustaining **nonlinear structures**

(Phase-locking)

Basic picture of stability

Linear stability

10-2

10-4

10-6

10-8

10-10

10-12

0

Time (ωt)

Growth rate $\gamma \approx \gamma_L - \gamma_d \Rightarrow$ Critical slope $\gamma_L = \gamma_d$ critical slope Stable, $\gamma < 0$ Nonlinearly unstable, $\gamma < 0$ Unstable, $\gamma > 0$ (Subcritical instability) 10⁻² Electric field amplitude |E| 10-2 Those Party 10-4 10-4 10-6 10-6 10-8 10-8 10⁻¹⁰ 10-10 10⁻¹² 10⁻¹² 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000

Time (ωt)

51/58

Time (ωt)

Nonlinear stability diagram of the BB model

Application: control in phase-space

 \Rightarrow Towards mitigation technique?

Nonlinear amplitude threshold

Outline

- I. Bump-on-tail instability
- II. The Berk-Breizman model
- III. Chirping
- IV. Subcritical instabilities

Perspectives

Many-modes BoT instability

Position x

Quasilinear theory

$$\frac{\partial f}{\partial t} = \frac{\partial}{\partial v} \left(D_{\text{QL}} \frac{\partial \tilde{f}}{\partial v} \right)$$
$$D_{\text{QL}} \sim \sum_{k} |E_{k}|^{2}/k$$
$$\frac{\partial |E_{k}|}{\partial t} = \gamma_{L} |E_{k}|$$
$$\bigvee$$

Flattening in the region $\gamma_L > 0$

Vedenov, Velikov, Sagdeev '61 Drummond & Pines '62 Sagdeev & Galeev '69

Outside the scope of QL theory:

- Phase-space turbulence, granulation
- Subcritical transport
- Strong fluctuations *Guillevic* '23

\Rightarrow Many open questions remain

More general roles of phase-space structures

Vortices in phase-space are observed in experiments

- Space plasmas
- Laboratory linear plasmas
- Magnetic reconnection of toroidal plasmas
- Fusion plasmas
- Laser plasmas

Deep implications for instabilities, turbulence, transport, heating

 $\times 0$

0

0

20

х

40

- Drive nonlinear instabilities
- Modify the magnitude of saturation, spectrum of turbulence
- Qualitative effect on transport
- Interact with large-scale flows
- Propagation of trapped turbulence

Review: Eliasson & Shukla '06

Saeki '79 Fox '08

Kusama '99 ; Berk, Breizman & Pekker '96

Sarri '10

Dupree '82

Terry '90

Biglari '88 Kosuga '11 Sasaki '17

Analogy with descriptions of turbulence in real space

- Energy transfers?
- Phase dynamics?
- Intermittency?
 - ⇒ Limited range of applicability

Collection of vortices

Vorticity in 2D Euler turbulence

⇒ Reduction of dimensionality

 Reduced model for smaller scales?

Backup slides follow

Difficulty of predicting&measuring linear rates

- γ_L depends on:
- the gradients of the distribution function in energy and in P_{ζ} .
- the alignment of the orbit with the eigenmode,
- the strength of the various resonances,

Too complicated to calculate analytically in general.

Numerically, requires kinetic-MHD computations and internal diagnostics.

- γ_d involves still-debated complex mechanisms:
 - Ion Landau damping

Betti, Freidberg, PF(74)

- Radiative damping

Mett, Mahajan, PF(92)

- Collisional damping by trapped electrons Gorelenkov, Sharapov, Phys.Scr.(92)
- Continuum damping

Rosenbluth, et al., PRL(92) Zonca, Chen, PRL(92)

Measured in dedicated experiments only.

Fu, et al., PRL(95)

New model can reproduce the observation

Our new model, which couples 1D kinetic equation with wave coupling equations, reproduces many features of the experiment.

63/38

Kinetic theory

System	Many incompress. fluids in 2D	Quasi-geostrophic fluid	1D collisionless plasma
Distribution	n(x, y, t)	$\omega(x,y,t)$	f(x,v,t)
	2D config. space	2D config. space	2D phase space
Description space	×	×	×
Continuity equation	$\frac{\partial n}{\partial t} + u_x \frac{\partial n}{\partial x} + u_y \frac{\partial n}{\partial y} = 0$	$\frac{\partial \omega}{\partial t} + u_x \frac{\partial \omega}{\partial x} + u_y \frac{\partial \omega}{\partial y} = 0$	$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + E \frac{\partial f}{\partial v} = 0$
Self- consistency	Hierarchy of fluid equations + closure	Stream function $\omega = \nabla^2 \psi$	Poisson $\frac{\partial E}{\partial x} = \sum_{s} q_{s} \int f_{s} dx$